Sharp Steklov Upper Bound for Submanifolds of Revolution

نویسندگان

چکیده

In this note, we find a sharp upper bound for the Steklov spectrum on submanifold of revolution in Euclidean space with one boundary component.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sharp Upper Bound for the Lattice Programming Gap

Given a full-dimensional lattice Λ ⊂ Z and a vector l ∈ Qd>0, we consider the family of the lattice problems Minimize {l · x : x ≡ r(mod Λ),x ∈ Zd≥0} , r ∈ Z d . (0.1) The lattice programming gap gap(Λ, l) is the largest value of the minima in (0.1) as r varies over Z. We obtain a sharp upper bound for gap(Λ, l).

متن کامل

A Sharp Upper Bound on Algebraic Connectivity Using Domination Number

Let G be a connected graph of order n. The algebraic connectivity of G is the second smallest eigenvalue of the Laplacian matrix of G. A dominating set in G is a vertex subset S such that each vertex of G that is not in S is adjacent to a vertex in S. The least cardinality of a dominating set is the domination number. In this paper, we prove a sharp upper bound on the algebraic connectivity of ...

متن کامل

A Sharp Upper Bound for the Number of Spanning Trees of a Graph

is the diagonal matrix of vertex degrees of G and A(G) is the adjacency matrix ofG. The eigenvalues of L(G) are called the Laplacian eigenvalues and denoted by λ1 ≥ λ2 ≥ · · · ≥ λn = 0. It is well known that λ1 ≤ n. We denote the number of spanning trees (also known as complexity) of G by κ(G). The following formula in terms of the Laplacian eigenvalues of G is well known (see, for example, [2]...

متن کامل

Polynomial algorithm for sharp upper bound of rainbow connection number of maximal outerplanar graphs

For a finite simple edge-colored connected graph G (the coloring may not be proper), a rainbow path in G is a path without two edges colored the same; G is rainbow connected if for any two vertices of G, there is a rainbow path connecting them. Rainbow connection number, rc(G), of G is the minimum number of colors needed to color its edges such that G is rainbow connected. Chakraborty et al. (2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometric Analysis

سال: 2021

ISSN: ['1559-002X', '1050-6926']

DOI: https://doi.org/10.1007/s12220-021-00678-1